Monte Carlo Methods and Bayesian Computation: MCMC
نویسنده
چکیده
Markov chain Monte Carlo (MCMC) methods use computer simulation of Markov chains in the parameter space. The Markov chains are defined in such a way that the posterior distribution in the given statistical inference problem is the asymptotic distribution. This allows to use ergodic averages to approximate the desired posterior expectations. Several standard approaches to define such Markov chains exist, including Gibbs sampling, Metropolis-Hastings and reversible jump. Using these algorithms it is possible to implement posterior simulation in essentially any problem which allow pointwise evaluation of the prior distribution and likelihood function.
منابع مشابه
Monte Carlo Bayesian Signal Processing for Wireless Communications
Many statistical signal processing problems found in wireless communications involves making inference about the transmitted information data based on the received signals in the presence of various unknown channel distortions. The optimal solutions to these problems are often too computationally complex to implement by conventional signal processing methods. The recently emerged Bayesian Monte...
متن کاملBayesian Computation Via Markov Chain Monte Carlo
A search for Markov chain Monte Carlo (or MCMC) articles on Google Scholar yields over 100,000 hits, and a general web search on Google yields 1.7 million hits. These results stem largely from the ubiquitous use of these algorithms in modern computational statistics, as we shall now describe. MCMC algorithms are used to solve problems in many scientific fields, including physics (where many MCM...
متن کاملEmbarrassingly parallel sequential Markov-chain Monte Carlo for large sets of time series
Bayesian computation crucially relies on Markov chain Monte Carlo (MCMC) algorithms. In the case of massive data sets, running the Metropolis-Hastings sampler to draw from the posterior distribution becomes prohibitive due to the large number of likelihood terms that need to be calculated at each iteration. In order to perform Bayesian inference for a large set of time series, we consider an al...
متن کاملStrategies for MCMC computation in quantitative genetics
In quantitative genetics, Markov chain Monte Carlo (MCMC) methods are indispensable for statistical inference in non-standard models like generalized linear models with genetic random effects or models with genetically structured variance heterogeneity. A particular challenge for MCMC applications in quantitative genetics is to obtain efficient updates of the highdimensional vectors of genetic ...
متن کاملMarkov Chain Monte Carlo Sampling for Evaluating Multidimensional Integrals with Application to Bayesian Computation
Recently, Markov chain Monte Carlo (MCMC) sampling methods have become widely used for determining properties of a posterior distribution. Alternative to the Gibbs sampler, we elaborate on the Hit-and-Run sampler and its generalization, a black-box sampling scheme, to generate a time-reversible Markov chain from a posterior distribution. The proof of convergence and its applications to Bayesian...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004